To thrive in the twenty-first century, can we learn to steer evolution?

Cliff Swallow in flight

Cliff swallow in flight. (Flickr: Don DeBold)

Many of the biggest challenges humanity faces in the next hundred years are biological: dwindling wild lands and disappearing biodiversity, antibiotic-resistant bacteria, and emerging new viruses, but also feeding nine billion people or more a healthy diet in a climate-changed world. As Theodosius Dobzhansky famously remarked—and as this very website’s name proclaims—nothing in biology makes sense except in the light of evolution. So are there evolutionary answers to all these biological challenges? According to a big new review article just released online ahead of print in the journal Science, the answer is emphatically yes.

The long list of authors, led by Scott P. Carroll and including Ford Denison, whose lab is just down the hall from my office at the University of Minnesota, explicitly connect evolutionary principles to global goals for sustainable development. These include the reduction of both “chronic lifestyle” diseases and infectious diseases, establishment of food and water security, clean energy, and maintenance of healthy ecosystems. Carroll and his coauthors divide the applications of evolution to these problems into cases where evolution is the problem, and those where evolution may offer the solution.

Continue reading

Is corn the new milk? Evolutionarily speaking, that is.

Cross-posted from Denim and Tweed.

ResearchBlogging.orgIt is a widespread misconception that, as we developed the technology to reshape our environment to our preferences, human beings neutralized the power of natural selection. Quite the opposite is true: some of the best-known examples of recent evolutionary change in humans are attributable to technology. People who colonized high-altitude environments were selected for tolerance of low-oxygen conditions in the high Himalayas and Andes; populations that have historically raised cattle for milk evolved the ability to digest milk sugars as adults.

A recent study of population genetics in Native American groups suggests that another example is ripening in the experimental fields just a few blocks away from my office at the University of Minnesota: Corn, or maize, may have exerted natural selection on the human populations that first cultivated it.

The target of this new study is an allele called 230Cys, a variant of a gene involved in transporting cholesterol. 230Cys is known only in Native American populations, and it’s associated with abnormally low production of HDL cholesterol (that’s the “good” kind of cholesterol) and thereby increased risk for obesity, diabetes, and heart disease. In Native American populations, the genetic code near 230Cys shows the reduced diversity associated with a selective sweep, which suggests that, although it’s not particuarly helpful now, this variant may have been favored by selection in the past.

Continue reading