In flour beetles, coevolution mixes things up

When evolutionary biologists think about sex, we often think of parasites, too. That’s not because we’re paranoid about sexually transmitted infections—though I’d like to think that biologists are more rigorous users of safer sex practices than the general population. It’s because coevolution with parasites is thought to be a major evolutionary reason for sexual reproduction.

This is the Red Queen hypothesis, named for the character in Lewis Carroll’s Through the Looking Glass who declares that “it takes all the running you can do to keep in the same place.” Parasite populations are constantly evolving new ways to infest and infect their hosts, the thinking goes. This means that a host individual who mixes her genes with another member of her species is more likely to give birth to offspring that carry new combinations of anti-parasite genes.

But although sex is the, er, sexiest prediction of the Red Queen, it’s not the whole story. What matters to the Red Queen is mixing up genetic material—and there’s more to that than the act of making the beast with two genomes. For instance, in the course of meiosis, the process by which sex cells are formed, chromosomes carrying different alleles for the same genes can “cross over,” breaking up and re-assembling new combinations of those genes. Recombination like this can re-mix the genes of species that reproduce mostly without sex; and the Red Queen implies that coevolution should favor higher rates of recombination even in sexual species.

That’s the case for the red flour beetle, the subject of a study just released online by the open-access journal BMC Evolutionary Biology. In an coevolutionary experiment that pits this worldwide household pest against deadly parasites, the authors show that parasites prompt higher rates of recombination in the beetles, just as the Red Queen predicts.

The red flour beetle, Tribolium castanaeum, is named for its predilection for stored grain products. This food preference makes the tiny beetles particularly easy to raise in the lab, where they’ve been useful enough as a study organism to rate a genome project, which was completed in 2008.


Kerstes, N., Berenos, C., Schmid-Hempel, P., & Wegner, K. (2012). Antagonistic experimental coevolution with a parasite increases host recombination frequency BMC Evolutionary Biology, 12 (1) DOI: 10.1186/1471-2148-12-18

Morran, L., Schmidt, O., Gelarden, I., Parrish, R., & Lively, C. (2011). Running with the Red Queen: Host-parasite coevolution selects for biparental sex. Science, 333 (6039), 216-218 DOI: 10.1126/science.1206360