Butterfly ears

When I really think about it, I suppose it isn’t too surprising that butterflies have ears. But what may be news even to butterfly aficionados is that the mysterious swollen wing vein in the subfamily Satyrinae actually helps these butterflies detect low-frequency sounds.

Sun et al. recently published an article in Biology Letters about their work identifying the function of these conspicuous forewing vein swellings. Using the common wood nymph (Cercyonis pegala) as a model, the researchers took some beautiful photos of the ear, the forewing vein, and the opening connecting the tympanal chamber (e.g. the ear canal) to the vein.

Ear and wing vein morphology of C. pegala. (a) Butterfly in resting position. A white circle marks the location of the ear. Scale bar: 5 mm. (b) Light micrograph of right tympanal membrane. Scale bar: 200 µm. (c) Forewing showing enlarged subcostal (Sc) vein, as well as cubital (Cu) and anal (An) veins. Tympanal ear is seen at the wing base. Scale bar: 1 mm. (d) Internal structure of Sc vein viewed through the cuticle. Scale bar: 500 µm. (e) Cross-section of the Sc vein. Scale bar: 500 µm. (f) Laser scan of Sc vein and tympanal membrane depicting displacement at 4.8 kHz. Inset: Scanning electron micrograph of the opening connecting the tympanal chamber and Sc vein. Scale bar of inset: 100 µm. Figure and caption from Sun et al. (2018).

After capturing images of the ear and puffy vein, they tested the mechanical response of the ear. C. pegala ears appeared to be most sensitive to low-frequency sounds, and when the special veins were ablated (cut open longitudinally) the ear showed reduced sensitivity.

What do butterflies hear? The authors suggest that they can detect sounds like bird flight and calls. More broadly, insects also use their ears (and other hearing organs) to locate mates and coordinate social interactions.

Want to read the entire (short) study? You can find it here.

Advertisements

To freeze or not to freeze: insect overwintering strategies

Perhaps winter hasn’t quite yet crawled up your windowpanes or stretched its fingers across your favorite pond, but it’s certainly making its presence known at latitude 64°N. I’ve been pulling out extra quilts, wrapping up in scarves for my morning bike commute, and making more baked goods to keep up with my hot chocolate habit.

As a graduate student, I study the molecular story behind arctic ground squirrel hibernation at the University of Alaska Fairbanks. I’m the first to admit I’m a mammal kind of gal⎯I gravitate towards the furry and fuzzy and revel in soft fur, large eyes, and squeaky-cute chirps. However, every now and then I step outside of my mammalian bias and remember that there is a world of tiny, crawling, wiggling creatures that are surviving the cold in ways that are equally as extraordinary as the strategies employed by my favorite hibernating rodent.

AGS-hibernating-arousing-001
Arctic ground squirrel hibernating in the lab. So cute. Copyright © 2013 Øivind Tøien/Institute of Arctic Biology.

I don’t think I’m alone in my mammalian predisposition. It can be easy to overlook insects, especially the more inconspicuous and less flashy species. However, during the Alaskan spring and summer, it is impossible to ignore the state’s most infamous insect: the mosquito.

17031-close-up-of-a-mosquito-larva-pv
Mosquito (Culex quinquefasciatus) larva. Image courtesy of the CDC.

Growing up in Alaska, I never thought about what happened to mosquitoes during the winter. Perhaps I was simply happy they were gone, or maybe my gravitation towards the furry was present from a tender age. In any case, it wasn’t until I was in my late twenties that I learned there are two general types of Alaskan mosquitoes. One variety⎯affectionately called “snow mosquitoes”⎯overwinter in adult form. When temperatures start to drop, they tuck away in tree bark or bury themselves in the leaf litter and begin the process of supercooling.

You may have heard of supercooling, the process by which a liquid can remain liquid below its usual freezing point. A supercooled liquid must remain completely free of any impurity, as even a speck of dust can serve as a nucleation point for ice crystals to form. After snow mosquitoes rid their blood of impurities, they are able to survive winter temperatures as low as -31°C.

The adults of the other variety of mosquito lay their eggs in the fall. After depositing the next generation of blood-sucking babes, the adults do not attempt to make it through the chilly winter ahead and die an unmourned death. Their progeny hatch in the spring and are considered much more voracious biters than their cousins. (Interested in mosquito matters? Refer to the seminal 1949 book The Natural History of Mosquitoes by Marston Bates.)

(Quick mammalian aside: Arctic ground squirrels are the only known mammal to supercool. Similar to mosquitoes, they are also thought to remove their blood of impurities that would otherwise encourage ice growth. Arctic ground squirrels can lower their body temperature to -2.9°C, an incredible feat for an endotherm.)

Supercooling is an example of a freeze-avoidant strategy, in which an animal shifts its physiology to avoid the buildup of ice crystals in its blood. Yellowjacket queens living in subarctic Alaska also supercool. To avoid touching snow or ice, which can disturb a supercooled insect and promote instantaneous freezing, the queens hang by their mandibles from a twig or leaf stem in the leaf litter. The hollow space occupied by their hanging body creates a buffer of air between them and any dangerous frozen water.

Common_wasp_or_Yellowjacket-_Vespula_vulgaris_-
Vespula vulgaris, or common wasp, or yellowjacket. Image courtesy of JL Boyer.

Another equally impressive strategy employed by overwintering insects is freeze tolerance. Instead of preventing the formation of internal ice, these insects embrace it. There are various means of becoming an insect icicle, and most involve promoting crystallization extracellularly. Encouraging ice to form outside of cells protects the delicate machinery within cells, which carries clear benefits to the animal. One exception to this rule is found in the alpine cockroach (Celatoblatta quinquemaculata), which can survive temperatures down to -9°C and allows for the formation of ice crystals within its gut cells. It isn’t entirely clear how they achieve this feat, but it could be via thermal hysteresis proteins (also known as antifreeze proteins). These proteins widen the gap between water’s melting point and freezing point by shaping ice into protein-sheathed, faceted ice crystals. Employing a thermal hysteresis strategy decreases the insect’s lower lethal temperature. Other freeze-tolerant insects include the Isabella tiger moth (Pyrrharctia isabella) and the flightless midge (Belgica antarctica).

1-s2.0-S0968000414001716-gr2
The mechanism of thermal hysteresis via antifreeze proteins. Figure courtesy of Davies 2014.

It’s incredible to think about anything staying warm during a Fairbanks winter, much less a tiny mosquito or a wee wasp queen. To maintain my own endothermic heat through Alaska’s longest season, I use a variety of items and strategies, including down jackets, mittens, extra socks, toe warmers, heating oil, gasoline, wood stoves, hot chocolate, soup, quilts, and dog snuggles. Not nearly as efficient as some of my insect friends, but they will have to do.

Dynamic telomeres and the aging process

My name is Sara Wilbur. I’m a third-year masters student in biology at the University of Alaska Fairbanks.

IMG_20170312_122527159 (1).jpg
Me and my dog Junie biking the White Mountains trail. Photo credit: Jason Clark.

I’ve written for NiB before, about work-life balance in academia, and yesterday I was introduced as the newest contributor to NiB. I’m very excited to write for this wonderful project! You can expect future articles to focus on telomeres, arctic ground squirrels/hibernation, and scientific life in Alaska.

Aging, DNA structure, and the dynamic telomere

The mind simplifies difficult concepts to support graspability. One example of this tendency is found in our attempts to define the aging process. Aging is complex, nuanced, and expressed differently across individuals. It would be quite useful if there was a quantifiable “thing” in the body that indicated how long an organism had left to live. In the mid-1970s, a discovery came that presented itself as a solution to the problem of measuring age: protective, terminal chromosome sequences known as telomeres.

2930423615_5320362dea_o.jpgAging is complex and nuanced. Photo credit: Flickr.

As is widely understood, DNA provides the molecular “blueprint” for all organisms, influencing what they look like and how they behave. The particular nucleic acid sequences (the Ts, As, Gs, and Cs) of an individual’s DNA codes for specific proteins, which are involved in virtually every cellular process. However, of all the DNA you have, only 1% of DNA contains coding sections. Initially considered “junk DNA,” the remaining 99% of noncoding DNA fulfills many important functions, including transcriptional regulation (turning genes “up” to make more of a particular protein or “down” to lessen protein production) and DNA protection, a duty fulfilled by the dynamic telomere.

Telomeric duties

Telomeres have two main purposes. One is to maintain chromosome integrity. If you’re a molecule of DNA, a double-strand break is cause for alarm. Fortunately, DNA repair enzymes are recruited to double-strand breaks, allowing DNA to replicate properly and be transcribed faithfully. However, if you think about it, a chromosome end could be seen as a double-strand break. What prevents chromosome ends from being unnecessarily repaired? It turns out that telomeres aren’t simply naked DNA sequences, but are instead intimately associated with several proteins in a complex known as shelterin. Shelterin proteins help the telomere fold back and associate with itself. This forms a “t-loop” to essentially hide and protect the chromosome end.

F1.large (1)
Telomeric structure and associated proteins. Figure credit: Blackburn et al. 2015.

Perhaps more famously, telomeres also act as a buffer to prevent coding DNA erosion during cell replication. An important consequence of the evolution of linear chromosomes (found in all eukaryotes, from yeast to elephants) is that a few nucleotides are lost with each round of cell division. The DNA replication machinery cannot fully replace the outermost nucleotides, so the DNA strand gets shorter over time. As it is the telomere sequence that caps chromosomes, it is these sequences—rather than the DNA in between—that take the hit.

How are telomeres implicated in the aging process?

Telomere shortening over time is thought contribute to the aging process. Before I describe why this might be, let’s explore a more fundamental idea: what is aging, anyway? Basically, it’s a loss of physiological—or bodily—function. A proposed root case of declining functionality in the body is cellular senescence, or when a cell ceases dividing; a buildup of these cells within a tissue is associated with aging. Telomere shortening is one cause of cellular senescence: when telomeres reach a critically short length, cells cease to divide. This is a mechanism to prevent cells from becoming cancerous. However, there is a tradeoff: a buildup of senescent cells that can no longer induce tumor growth could be driving the aging process.

Telomere length does change with time, but shortening is also influenced by lifestyle and genetics. Some species have “mega-telomeres” (including mice, which are a common model for in vivo telomere length research), which have a different biology than more run-of-the-mill telomeres (as we humans possess). To further complicate matters, some species possess the enzyme telomerase in their body cells. This enzyme replaces lost nucleotides, essentially preserving telomere length over time. However, telomerase isn’t the answer to short telomere’s prayers: 80 to 90% of all cancers are associated with over-active telomerase activity.

The future of telomere research

The initial excitement surrounding telomeres’ discovery forty years ago and the potential for its use as a simple biomarker of aging and disease are still with us today. However, like any biological process, telomere dynamics are much more complicated than we first thought. For instance, while there is overwhelming evidence from the past few decades that telomeres do decline with age across species, it is still unclear if telomere length can accurately predict calendar age. The future of telomere research will continue to evolve away from cell culture work into living systems, and from common laboratory animals to a wider species diversity, including ectotherms (“cold-blooded” animals), plants, and hibernators. Stay tuned for more on telomere dynamics in these “non-traditional” organisms!

IMG_2010
What’s happening in hibernator telomeres? Juvenile arctic ground squirrel hiding in some willows. Photo credit: the author.

Dracula: the largest flying dinosaur yet!

Good news! Jurassic World II comes out this summer. Which means that I’m going to be posting a lot about dinosaurs, because my nerdy evolution heart starts beating faster when we talk about the prehistoric.

For those who remember, pterosaurs were the first flying vertebrates, and ruled the skies. And in Romania’s Transylvania region scientists discovered the bones of a new pterosaur. They nicknamed their find “Dracula.” Using the fragments of bone as their guide, scientists reconstructed a model of the creature—which they say is the largest pterosaur found to date, reaching around 3.5 meters high with an estimated 12-meter wingspan.

The reconstruction is now on display as part of a new pterosaur exhibit at the Altmühltal Dinosaur Museum in Denkendorf, Germany. The exhibit also separately showcases the original specimen’s excavated bones.

Which I will be visiting this summer, because BOY THAT SOUNDS AWESOME!

Read more about it here.

Barcelona Trip Guide v2.png

 

Utilizing Pink and Blue to denote gender in graphs

As a thorough data nerd (please see my new brunch site, in which I insist all my fellow brunch goers fill out a survey so I can skip home and tabulate the data), I spend a lot of time thinking about colors in charts. What are color blind friendly? What are the best colors to demonstrate the idea I’m interested in? Are they consistent throughout the presentation/report/paper/poster?

Which is why I found this medium post about gender and colors so interesting.

“So with the impact of the #MeToo movement and the widespread reporting of the gender pay gap, perhaps now is the time to uncouple pink and blue from their gender associations. The question is: are chartmakers ready to step up to the challenge?”

*Also, before I get emails: I know this isn’t a biology post. It’s a data nerd post. I can wear many hats, deal with it.

1_u1vp-V_kHqDRbO2y-KHKEA

Here’s what we really know about transgender genetics—so far

In an awesome piece over at the Genetic Literacy project, Ricki Lewis what is known (and what is largely overblown) about transgender genetics.

TL;DR: It’s a bit too soon to screen for transgender genes, beyond the usual genome wide association studies, and we really should be asking ourselves if, ethically, this is a road we want to go down.

Also, journalist can run with an abstract and things get out of hand quickly. But I’m fairly certain we all already knew that.

trans-3-23-18-1

 

Blind Cavefish, and what they can teach us about getting less sleep

The Mexican cavefish have no eyes, little pigment, and require about two hours of sleep per night to survive.

Imagine what you could do with those extra hours! So we should ask cavefish, how do they do it?

Read more about that very research here.

Blind-Fish1-348x196.jpg