The Genetic Oddity that gives Cephalopods their Smarts (All Hail Cthulhu!)

It’s no secret on this blog that I’m fascinated by the intelligence, and recent increase in population size of cephalopods (and by extension their potential to take over our world…).

Octopuses can open jars, squid communicate with their own Morse code and cuttlefish start learning to identify prey when they’re just embryos.

And it turns out that their intellect might be related to the way that they edit their genes. Read about it here.

07tb-octopus01-articleLarge.jpg

Advertisements

I can’t stop talking about CRISPR

You know when you look at a giant box of chocolates, and you think “I’ll only have just the one” do you know you’re lying to yourself before you eat the whole box?

I have been telling myself for months that I’m going to stop posting about the ongoing CRISPR saga. It should not surprise anyone that like the fat kid with the box of chocolate I’m not done.

We have started human trials on CRISPR. That’s right, the dream, the money sink, the controversy over the patent, and somehow, less than a year later, we’re already at human trials. This is insane (but interesting?).

What could possibly go wrong? Read the non-exhaustive list here.

images (2)

And you should probably be aware there will be more posts about CRISPR in the future…

Crowd-funding a Joshua tree reference genome

(Flickr: jbyoder)

(Flickr: jbyoder)

Remember Joshua trees? If you read this blog, you probably do. They’re an ecological keystone species — and a cultural icon — in the Mojave desert, and they have a fascinating, co-evolving relationship with yucca moths. Some contributors to this very blog, have been studying that pollination relationship and its evolutionary consequences for a decade, building on natural history research that goes back to the time of Charles Darwin.

Up to now, though, modern genetic tools have been of limited use for Joshua trees, because no one has assembled the complete DNA sequence of a Joshua tree. Having a “reference genome” would let those of us who study the trees identify specific genes involved in coevolution with yucca moths, compare the evolutionary effects of that pollination mutualism to natural selection exerted by the harsh environments in which the trees grow, and even use genome-scale data to inform Joshua tree conservation planning.

Well, we’ve decided it’s time to do all of that, and we’re asking for help. A team of folks with expertise in Joshua trees’ natural history, Mojave Desert ecology, and genomic data analysis launched the Joshua Tree Genome Project a couple weeks ago, with a crowd-funding campaign on Experiment.com to pay for part of the DNA sequencing we’d need to assemble a reference genome.

We’re approaching 50% of our funding goal, and leading a competition among projects based at undergraduate universities to recruit the most donors, which could win us $2,000 in matching funds — so even if you give as little as $1, you’re providing a big boost to the project. Go check out the Joshua Tree Genome Project website, and then head on over and pledge your support.

Sex chromosomes in conflict

House mouse (by Wenfei Tong http://darwinsjackal.blogspot.com/)

House mouse (by Wenfei Tong)

Have you thought that not all the genes in your body might have the same evolutionary interests? The mouse Y chromosome has just been revealed after years of superhuman slog and turns out to be strikingly different from other non-recombining sex chromosomes in two main ways. Firstly, the mouse Y contains almost no DNA signatures of its past as a non sex chromosome. Secondly, most of it isn’t “junk”. Both these observations have shown just how much conflict within a genome can shape the evolution of entire chromosomes.

Figure from Sho et a. 2014, showing how much of the mouse Y contains recently evolved, repetitive coding sequences.

Figure from Sho et a. 2014, showing how much of the mouse Y contains recently evolved, repetitive coding sequences.

Continue reading

Postdoc in evolutionary genetics of complex traits

2012.10.22 - Medicago truncatula

Do you like evolution, genetics, and evolutionary genetics? Would you like to think of things to do with a whole lot of genetic data and a flagship model legume? Well, my boss, Peter Tiffin, is looking for another postdoc. Here’s the post description from EvolDir:

I have available a post-doctoral position to work on association and evolutionary genomics of the model legume Medicago truncatula. Collaborators and I have recently collected genome sequence for > 200 accessions and have used these data for GWAS and population genomic analyses. We are currently working to refine our understanding of genomic variation segregating within this species and are particularly interested in the evolutionary genetics of the symbiosis between Medicago and Sinorhizobia. The successful applicant will have considerable freedom to develop research in their area of interest.

The deadline for submissions is 15 September 2013, so get in touch with Peter pronto if you’re interested. (See the full ad for contact information and the application package requirements—it’s standard stuff.) Benefits of the position include working with population genomic data from the cutting edge of current technology in a collegial lab with some very smart people (and me) in the midst of a fantastic community of biologists at the University of Minnesota—as well as living in the Twin Cities, which are empirically awesome. Yes, even in winter.

@NothingInBio at #Evol2013: What we’re presenting

Cecret Lake - Alta Utah

The Evolution 2013 meetings are nearly upon us, and most of the team here at Nothing in Biology Makes Sense! are going to be in Snowbird, Utah for the joint annual meeting of the American Society of Naturalists, the Society of Systematic Biologists, and the Society for the Study of Evolution. Rather than make you hunt through the online program, here’s where we’ll be, and what we’re presenting:

  • Amy will present “The population genetics of rapidly evolving reproductive genes: How much variation should we expect to find?” on Sunday at 9:30, as part of the Evolutionary Genetics and/or Genomics section in Cotton D/Snowbird Center. [program link]
  • Look for some of CJ’s work in a lightning talk by her dissertation advisor, Mark Dybdahl, titled “Identifying the molecular basis of coevolution: merging models and mechanisms” on Monday at 11:45, in Superior B/Cliff Lodge. [program link]
  • Noah will present “What can we learn from sequence-based species discovery? An example using sky island fly communities” on Tuesday at 9:30, as part of the Community Ecology and Evolution section in Peruvian A/Snowbird Center. [program link]
  • Sarah will present “Nature, nurture and the gut microbiota in the brood parasitic Brown-headed Cowbird” on Tuesday at 10:30, as part of the Community Ecology and Evolution section in Peruvian A/Snowbird Center. [program link]
  • Jeremy will present “Evidence for recent adaptation in genome regions associated with ecological traits in Medicago truncatula” on Tuesday at 2:45, as part of the Genetics of Adaptation section in Rendezvous A/Snowbird Center. [program link]

Looks like we’re in for a busy Tuesday! But this year, you won’t have to choose between us.

Where have all the ‘N-mt’s gone?

Screenshot 12:4:12 1:19 PM

This week I would like to highlight a recent scientific publication by one of our very own contributor’s here at Nothing in Biology Makes Sense! – Devin Drown. Drown and colleagues recently published an article in Genome Biology and Evolution that investigates how nuclear genes that interact with the mitochondria (N-mt genes) are distributed within the genome. They show that when it comes to the location of genes within the genome, all is not equal, and suggest that conflict between males and females may influence where our genes are located.

Continue reading