THE Darwin Fish.

Looks like this guy:

Is the cartoon version of this guy:

Cuvier’s Bichir

It walks. It breathes air. And apparently it can adapt to terrestrial life relatively “easily”.

The scientists raised groups of bichir on land for eight months to find out how they would differ from bichir raised in the water. They found that the land-raised fish lifted their heads higher, held their fins closer to their bodies, took faster steps, undulated their tails less frequently and had fins that slipped less often than bichir raised in water. The land-raised fish also underwent changes in their skeletons and musculature that probably paved the way for their changes in behavior. All in all, these alterations helped bichir move more effectively on land.

 

There’s a video too!

Random Natural History: Ebola

through a glass, darkly

Currently there is a catastrophic outbreak of Ebola happening in West Africa. Over 1700 infections have been recorded with nearly 1000 deaths, making it the deadliest outbreak of ebola known. Infection results in a hemorrhagic fever, which starts out a bit like the influenza, but can result in bleeding from mucous membranes, organ failure, and ultimately death. But what is Ebola?

Ebola is a Filovirus. Filoviruses are a small group of viruses only known to infect mammals. They are so named because of their filamentous shape. They have tiny genomes, only ~19,000 base pairs in length, containing only seven protein coding genes and two regulatory regions. By contrast, the human genome is over 3 billion base pairs, contains around twenty thousand genes and has innumerable (by which I mean as yet unnumbered regulatory regions). Because of ebola’s simplicity, (as with all viruses), it cannot reproduce without commandeering the cellular machinery of its hosts. In the words of Cormac McCarthy, These anonymous creatures… may seem little or nothing in the world. Yet the smallest crumb can devour us.

Continue reading

the OTHER microbiotas

The Body’s Ecosystem is a comprehensive – yet short enough to finish in a single sitting – review on current NON-GUT microbiota research, focusing on the mouth, lungs, swimsuit area, maternal microbiome and skin. It’s pretty interesting and pretty pretty – I really liked the accompanying artwork (including two hand-drawn, possibly NSFW genitalia pictures). It also features research from a couple UIdaho labs (m’ alma mater). In other words, a darn good read, in my opinion.
Altogether, the members of the human body’s microbial ecosystem make up anywhere from two to six pounds of a 200-pound adult’s total body weight, according to estimates from the Human Microbiome Project, launched in 2007 by the National Institutes of Health (NIH). The gastrointestinal tract is home to an overwhelming majority of these microbes, and, correspondingly, has attracted the most interest from the research community. But scientists are learning ever more about the microbiomes that inhabit parts of the body outside the gut, and they’re finding that these communities are likely just as important. Strong patterns, along with high diversity and variation across and within individuals, are recurring themes in microbiome research. While surveys of the body’s microbial communities continue, the field is also entering a second stage of inquiry: a quest to understand how the human microbiome promotes health or permits disease.

Just one of the pretty pretties in the article…

Bacteria, Circumcision and HIV. Oh my!

Basically every place on our bodies is loaded with bacteria. All of these communities are important (I’ve written about some of the ways before) and more and more research seems to be finding that our microbes play an active role in fighting (or causing) disease.

So maybe it’s obvious that microbes in our swimsuit areas could be involved in sexually transmitted disease. OK, maybe not “obvious” but it may be the case with HIV and the penis microbiota. Did you know that circumcision reduces the rate of HIV transmission to men by 50 – 60%? That’s a pretty significant reduction (no pun intended). There are two major (and non-mutually exclusive) hypotheses as to how circumcision accomplishes this – morphological and bacterial. [SIDENOTE: if you are unfamiliar with the technical aspects of circumcision, I suggest Wikipedia – which has a lot of information but contains an image or two that may not be safe for work – or this Mayo Clinic site.]   

Continue reading

We’re not missing the penis bone, we just lost it

** Hey y’all – it has come to my attention that the article this post is criticizing might have been more of a tongue-in-cheek textual criticism than a literal hypothesis (like I treated it). Instead of it being “this is what we think is true” opinion, I think it’s more of a “this interpretation of the Bible is more justified by the natural world”. Read at your own risk and sorry for my confusion. – S.Hird **

During his Society of Systematic Biologists presidential address at this year’s Evolution meeting, Jack Sullivan mentioned a rather…unusual…article. (Well, letter, technically.) Congenital Human Baculum Deficiency, by Scott Gilbert and Ziony Zevit was published in the American Journal of Medical Genetics in 2001; it describes their hypothesis that Genesis 2:21-23 doesn’t mean Eve came from one of Adam’s ribs, she came from his baculum.

Walruses have bacula almost 2 feet long – it is required that a picture of a walrus accompany any discussion of bacula.

What’s that, you say? Baculum is the technical term for the penis bone. Many mammals have one – presumably to aid in sexual intercourse. For mammals that mate infrequently, prolonged intercourse ups the chances that a particular male sires some babies. For mammals that must mate quickly, the baculum provides immediate rigidity. And for all mammals, keeping the urethra straight while copulating is imperative, so maybe it’s there to prevent a kink in the works, so to speak. The truth is, there are a lot of hypotheses about what bacula do but – as you might imagine – they’re kind of difficult to test. Regardless, our nearest evolutionary neighbors, the great apes, all have bacula, as do most other primates. Gilbert and Zevit cite this– the fact that our baculum is missing – as evidence for their argument. Which goes like this:

  1. A rib seems like an unlikely origin for Eve because male and female humans have the same number of ribs.
  2. Ribs also lack “intrinsic generative capacity”, which penises have “in practice, in mythology, and in the popular imagination”.
  3. Most mammals – and especially primates – have bacula, humans do not.
  4. It is therefore “probable” that Adam’s baculum was removed to make Eve, and not a rib.

The authors then continue to support their argument with alternate translations of the Hebrew word for “rib” (which they say could mean “support beam”) and claim the raphe of the human male scrotum is what Genesis 2:21 is referring to when it says “The Lord God closed up the flesh.”** I’m almost convinced!

Continue reading

Friday Coffee Break, Easter/April Fools edition

black coffee with chocolate easter eggs

Every Friday at Nothing in Biology Makes Sense! our contributors pass around links to new scientific results, or science-y news, or videos of adorable wildlife, that they’re most likely to bring up while waiting in line for a latte.

To get this weeks coffee break started, Amy brings us a post about the Paleo diet.  A new book by Marlene Zuk aims to show that the Paleo diet is a misinterpretation of evolution.

Jeremy takes the time this week to wonder about the effect on sea level if all the ships in the ocean were removed.  Alternatively, XKCD also wondered what would happen if you removed all the sponges.

Sarah stumbled upon this gem of a PDF book which will hopefully prove useful as she transitions from student to post doc.  She also brings up the potentially scary idea that you may not own your own DNA.  At least if the current patent situation remains upheld.  What happens if a company can own a 15-base pair fragment of DNA?

CJ continues the discussion on DNA with an article on the recent sequencing of the HeLa genome and the continued controversy regarding the ownership and publication of an individuals genome.  We continue to venture on into a strange new world with these issues.

Which came first: The obese chicken or its obese microbiota?

Historically, medical research has focused on pathogenic bacteria when trying to understand the relationship between human health and microorganisms. This makes intuitive sense – since pathogens make us sick – but our bodies host way more nonpathogenic bacteria than pathogens and they function in keeping us healthy. Our gastrointestinal tract has trillions of bacteria in it and much recent work has been trying to understand these complex communities. Mice are a common model for understanding human gut microbes and health. Enter Obie, the obese mouse (Figure 1, left) and Lenny, the lean mouse (right).

Figure 1: Obie and Lenny

Obie and Lenny are genetically different at a locus in their genomes that codes for leptin – a hormone that inhibits appetite. Mice that can’t make this hormone become very hungry and morbidly obese. These two mice also differ in the composition of their gut microbiota – obese individuals (both mice and human) have different amounts of the main bacterial phyla in their gut and as a result, are able to more efficiently extract calories from food. In other words, if you give both of them the exact same amount of food, Obie is going to get more calories from it than Lenny, contributing to Obie’s weight problem. In humans, where the status of our “leptin locus” is not normally known and probably not as straightforward as the case of Obie and Lenny– it’s been hard to tell whether this shift in gut microbiota is the CAUSE of obesity or the EFFECT of obesity. That brings me to today’s paper: a short communication in The ISME Journal (that’s open access!) by Fei and Zhao that addresses this exact problem.

Continue reading