Skeptical that PMS is an adaptive response designed to break up your relationship? Me too.

In a pleasantly surprising turn of events, this week a take-down of some dubious evolutionary psychology was published by the popular media!  The original article, a perspective piece published in Evolutionary Applications, claims that moodiness associated with PMS may have historically served an adaptive role by driving infertile couples apart. 

Premenstrual syndrome (PMS) affects up to 80% of women, often leading to significant personal, social and economic costs. When apparently maladaptive states are widespread, they sometimes confer a hidden advantage, or did so in our evolutionary past. We suggest that PMS had a selective advantage because it increased the chance that infertile pair bonds would dissolve, thus improving the reproductive outcomes of women in such partnerships. We confirm predictions arising from the hypothesis: PMS has high heritability; gene variants associated with PMS can be identified; animosity exhibited during PMS is preferentially directed at current partners; and behaviours exhibited during PMS may increase the chance of finding a new partner. Under this view, the prevalence of PMS might result from genes and behaviours that are adaptive in some societies, but are potentially less appropriate in modern cultures. Understanding this evolutionary mismatch might help depathologize PMS, and suggests solutions, including the choice to use cycle-stopping contraception.

Check out the response, published by The Daily Beast, here:

Here’s the scapegoat unhappy spouses have been waiting for: According to a paper out last week by Michael R. Gillings, premenstrual syndrome (PMS) can ruin a marriage. Gillings claims that PMSing women—in infertile couples in particular—may use feelings of “animosity” as well as risk-seeking and competitive behaviors to leave their husbands and find someone new. I’m sorry to say, but the evidence in favor of this hypothesis is thinner than Always Infinity menstrual pads.

Selecting for a butterfly of a different color

Bicyclus anynana 20110217 022654 5455M.JPG

Bicyclus anyana in its low-key natural look. Photo by Gilles San Martin, via Wikimedia Commons

Via NPR: a paper published online this week ahead of print at PNAS reports the results of an artificial selection experiment that changed butterflies’ wings from brown to blue.

We used artificial selection on a laboratory model butterfly, [Bicyclus] anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection.

Continue reading

A guide to the science and pseudoscience of A Troublesome Inheritance, part III: Has natural selection produced significant differences between races?

This is the third in a series of guest posts in which Chris Smith will examine the evolutionary claims made in Nicholas Wade’s book A Troublesome Inheritance. You can read part I here, and part II here. Chris is an Associate Professor of Evolutionary Ecology at Willamette University. He uses population genetic approaches to understand coevolution of plants and insects, and he teaches the interdisciplinary course “Race, Racism, and Human Genetics” with Emily Drew.

A Troublesome Inheritance was published in 2014 by Penguin Books. Cover image via Google Books.

This spring former New York Times science writer, Nicholas Wade, released his latest book on human evolution, A Troublesome Inheritance: Genes, Race, and Human History. In it, Wade argues that genetic studies completed in the eleven years since the Human Genome Project was completed reveal real and important differences between human races. Unsurprisingly, the book’s release has been met with a sharply divided critical reception.Whereas the book has been widely embraced by those on the political right, and by the white identity movement, it has been panned by anthropologists, evolutionary biologists, and population geneticists. For the last two weeks at Nothing in Biology Makes Sense, I’ve been looking in depth at the literature that Wade uses to support his ideas. Last week I considered Wade’s argument that natural selection acting on the MAO-A gene – a neurotransmitter implicated in aggression and impulsivity – has led to behavioral differences between races. This week I will consider Wade’s larger claim that natural selection has produced numerous differences between races.

Throughout the book Wade continually repeats the mantra that natural selection on humans has been “recent, copious, and regional.” It would be hard to find an evolutionary biologist that would disagree with these rather vague pronouncements. Indeed, there are a multitude of studies showing that natural selection has acted on humans, and there is persuasive evidence that selection has caused evolutionary changes in human populations as we have adapted to diverse environments over the course of the last several thousand years (see, for example, Yi et al., 2010).

However, scratching the surface reveals that when he says that natural selection has been “recent, copious, and regional,” what Wade actually means is that natural selection has been “radical, complete, and racial.” By Wade’s account, natural selection has dramatically reshaped the human genome, producing major differences between races. This much more dramatic interpretation is entirely unsupported by the literature, however. In truth, Wade vastly overstates the portion of the human genome that shows evidence for natural selection, and where there has been recent natural selection acting on humans, its effect has primarily been to create genetic differences between members of the same race, and similarities between people of different races.

Continue reading

A guide to the science and pseudoscience of A Troublesome Inheritance, part II: Has natural selection favored violent behavior in some human populations?

This is the second in a series of guest posts in which Chris Smith will examine the evolutionary claims made in Nicholas Wade’s book A Troublesome Inheritance. You can read part I here. Chris is an Associate Professor of Evolutionary Ecology at Willamette University. He uses population genetic approaches to understand coevolution of plants and insects, and he teaches the interdisciplinary course “Race, Racism, and Human Genetics” with Emily Drew.

A Troublesome Inheritance was published in 2014 by Penguin Books. Cover image via Google Books.

Last week at Nothing In Biology Makes Sense, I began critiquing Nick Wade’s latest book, A Troublesome Inheritance. The book has produced a firestorm of criticism, largely because it argues that evolution has produced significant cultural and behavior differences between races.

Wade makes many sweeping claims, among them: that natural selection has made the English inherently fiscally prudent and more likely to defer gratification by saving for tomorrow, that events early in the history of Judaism caused the Jews to evolve features predisposing them to careers in banking, and that genetic variation in certain neurochemicals has made Africans inherently more violent.

Wade hangs these seemingly bizarre conclusions on the mantle of modern population genetics, which he claims confirms the existence of ‘three primary races,’ that have evolved real and significant cultural differences between them. By heavily referencing the scientific literature, Wade manages, as Mike Eisen put it, to “give the ideas that he presents… the authority of science… What separates Wade’s theories – in his own mind – from those of a garden variety racist is that they are undergirded by genetics.”

Continue reading

Pollination syndromes point to species interactions present and past

Ruby-throated Hummingbird at Cardinal Flower

Want hummingbirds? Paint the town red. Photo by U.S. Fish and Wildlife Service Northeast Region.

In my part of North America, spring is finally underway after a long slog of a winter. The trees lining the streets of my Minneapolis neighborhood are lacy-green with budding leaves, flowerbeds all over the University of Minnesota campus are yellow and red and pink with daffodils and tulips, and violets are popping up in the edges of lawns everywhere I look.

Of course, all of this colorful display isn’t for my benefit. Showy flowers are an adaptation to attract animal pollinators. Some flowers are quite precisely matched to a single species of pollinator, but most flowers have lots of visitors. These less specialized flowers are still adapted for their attractive function, though—and this is the origin of pollination syndromes.

Continue reading

How many moths must a sloth carry off for the sloth to rely on the moths?

Three Toed Sloth

Is it easier being green? Photo by Bas Boemsaat.

Sloths are weird critters. Cute, in a certain light, but mostly weird. They’re members—with armadillos and anteaters—in a superorder of mammals called the Xenarthra, which are united by a unique form of multi-jointed vertebrae. Their diet consists mostly of leaves, which are poor quality food, and hard to digest. Fortunately, they also have one of the slowest, lowest-energy lifestyles of any mammal, using heavily modified limbs to hang upside down from branches while they browse, their most recent meal fermenting in their guts.

David Attenborough got up close with a sloth—which he calls a “mobile compost heap”—in The Life of Mammals. He also observes one of the sloth’s weirdest behaviors: to answer the call of nature, it climbs all the way down to the ground.

Why do sloths go to all that trouble—and risk—just to poop? Well, according to a recent paper in Proceedings of the Royal Society, they do it to feed poop-eating moths that help cultivate nutritious algae in their fur. No, but really.

Continue reading

Living at the edge, range expansion is a losing battle with mutations

Environments can vary substantially in habitat quality, local population abundance, or carrying capacity. Under some climate change scenarios, new, higher quality habitats become available along the margin of a species’ range (e.g. higher latitudes or altitudes) (Thomas et al 2001). These new habitats may be able to support larger population sizes. Factors of demography, evolution, and qualities of the abiotic and biotic communities all interact to determine where a species is found and may influence the ability of a species to expand its range. New research is building genetically explicit models in order to understand how the interplay of these different factors influence evolutionary changes,

Wordle of Peischl et al 2013

The authors of a recent study focus on how the interaction of the demographic process of range expansion changes the way that natural selection favors beneficial and deleterious mutations (Peischl et al 2013). Using both computer simulations as well as mathematical approximations, the authors find that at the range margins, individuals carry a substantial load of deleterious mutations.

Continue reading